dc.contributor.authorTan, Kang Hai
dc.contributor.authorYu, Jun
dc.date.accessioned2014-12-17T01:55:14Z
dc.date.available2014-12-17T01:55:14Z
dc.date.copyright2014en_US
dc.date.issued2014
dc.identifier.citationTan, K. H., & Yu, J. (2014). Numerical analysis with joint model on RC assemblages subjected to progressive collapse. Magazine of concrete research, 66(23), 1201-1218.en_US
dc.identifier.urihttp://hdl.handle.net/10220/24474
dc.description.abstractThe behaviour of structures subjected to progressive collapse is typically investigated by introducing column-removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete (RC) assemblages under a middle column removal scenario (MCRS) involve discontinuity due to bar slip and fracture near the joint interfaces. To consider the effects of the discontinuity on structural behaviour, a component-based joint model is introduced into macromodel-based finite-element analysis (macro-FEA), in which beams are modelled as fibre elements. The joint model consists of a series of non-linear springs, each of which represents a load transfer path from adjoining members to a joint. The calibration procedures of spring properties are illustrated systematically. In particular, a macro-bar stress–slip model is developed to consider the effects of large post-yield tensile strains and finite embedment lengths on the bar stress–slip relationship. Comparisons of simulated and observed responses for a series of RC assemblages indicate that macro-FEA incorporating the joint model is a practical approach to simulate the essential structural behaviour of RC assemblages under a MCRS, including catenary action. Finally, the macro numerical model is used to investigate the effects of boundary conditions, bar curtailment and beam depth on the structural behaviour of RC assemblages. The results suggest that beam depth affects the fixed-end rotation contributed by bar slip, and further significantly influences the development of catenary action.en_US
dc.format.extent18 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesMagazine of concrete researchen_US
dc.rights© 2014 Thomas Telford. This paper was published in Magazine of Concrete Research and is made available as an electronic reprint (preprint) with permission of Thomas Telford. The paper can be found at the following official DOI: [http://dx.doi.org/10.1680/macr.14.00100]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.subjectDRNTU::Engineering::Civil engineering::Structures and design
dc.titleNumerical analysis with joint model on RC assemblages subjected to progressive collapseen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1680/macr.14.00100
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record