dc.contributor.authorRui, Xianhong
dc.contributor.authorSun, Wenping
dc.contributor.authorYan, Qingyu
dc.contributor.authorLim, Tuti Mariana
dc.contributor.authorSkyllas-Kazacos, Maria
dc.identifier.citationRui, X., Sun, W., Yan, Q., Lim, T. M., & Skyllas-Kazacos, M. (2014). Microemulsion-assisted synthesis of nanosized Li-Mn-O spinel cathodes for high-rate lithium-ion batteries. ChemPlusChem, 79(12), 1794–1798.en_US
dc.description.abstractLi1.16Mn1.84O4 nanoparticles (50–90 nm) with cubic spinel structure are synthesized by combining a microemulsion process to produce ultrafine Mn(OH)2 nanocrystals (3–8 nm) with a solid-state lithiation step. The nanostructured lithium-rich Li1.16Mn1.84O4 shows stable cycling performance and superior rate capabilities as compared with the corresponding bulk material, for example, the nano-sized Li1.16Mn1.84O4 electrode shows stable reversible capacities of 74 mAh g−1 during the 1000th cycle at a high rate of 40 C between 3.0 and 4.5 V. In addition, Li1.16Mn1.84O4 nanoparticles also show high Li storage properties over an enlarged voltage window of 2.0–4.5 V with high capacities and stable cyclability, for example, delivering discharge capacities of 209 and 114 mAh g−1 at rates of 1 and 20 C, respectively.en_US
dc.rights© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.subjectDRNTU::Engineering::Materials::Nanostructured materials
dc.titleMicroemulsion-assisted synthesis of nanosized Li-Mn-O spinel cathodes for high-rate lithium-ion batteriesen_US
dc.typeJournal Article
dc.contributor.researchEnergy Research Institute @NTUen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record