View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      A cluster-based distributed active current sensing circuit for hardware Trojan detection

      Thumbnail
      Final T-IFS-04202-2014.pdf (2.104Mb)
      Author
      Cao, Yuan
      Chang, Chip-Hong
      Chen, Shoushun
      Date of Issue
      2013
      School
      School of Electrical and Electronic Engineering
      Version
      Accepted version
      Abstract
      The globalization of integrated circuits (ICs) design and fabrication has given rise to severe concerns on the devastating impact of subverted chip supply. Hardware Trojan (HT) is among the most dangerous threats to defend. The dormant circuit inserted stealthily into the chip by the advisory could steal the confidential information or paralyze the system connected to the subverted chip upon the HT activation. This paper presents a transient power supply current sensor to facilitate the screening of an IC for HT infection. Based on the power gating scheme, it converts the current activity on local power grid into a timing pulse from which the timing and power-related side channel signals can be externally monitored by the existing scan test architecture. Its current comparator threshold can be calibrated against the quiescent current noise floor to reduce the impacts of process variations. Postlayout statistical simulations of process variations are performed on the ISCAS'85 benchmark circuits to demonstrate the effectiveness of the proposed technique for the detection of delay-invariant and rarely switched HTs. Compared with the detection error rate of a 4-bit counter-based HT reported by an existing HT detection method using the path delay fingerprint, our method shows an order of magnitude improvement in the detection accuracy.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Journal Article
      Series/Journal Title
      IEEE transactions on information forensics and security
      Rights
      © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TIFS.2014.2360432].
      Collections
      • EEE Journal Articles
      http://dx.doi.org/10.1109/TIFS.2014.2360432
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG