dc.contributor.author任江洪 Ren, Jiang-Hong
dc.contributor.author陈韬 Chen, Tao
dc.contributor.author曹长修 Cao, Chang-Xiu
dc.identifier.citationRen, J.-H., Chen, T., & Cao C.-X. (2012). Composite gaussian process regression model and its application to prediction of silicon content in hot metal. Journal of Chongqing University, 35(2), 123-127.en_US
dc.description.abstract为了提高基于高斯过程回归的软测量模型的预测精度,提出了一种混合高斯过程回归模型。该模型将高斯过程回归模型预测输出值的方差及其分布作为主要考虑因素,对多个高斯过程回归模型的输出值进行组合输出,获得了比单个高斯过程回归模型更高的预测精度和更强的模型鲁棒性。将该模型实用于高炉铁水硅含量预报模型的建模,获得了比使用单个高斯过程回归模型建模时更好的应用效果。In order to increase the predictive precision of gaussian process regression based soft sensor, a composite gaussian process regression model is proposed. This model combines the outputs of several gaussian process models as the output according to the variances and the distribution of the outputs, which results in higher prediction accuracy and higher robustness than the single gaussian process model. The proposed composite gaussian process regression model is successfully applied to the prediction of silicon content in hot metal.en_US
dc.relation.ispartofseriesJournal of Chongqing Universityen_US
dc.rights© 2012 重庆大学学报期刊社. This paper was published in Journal of Chongqing University and is made available as an electronic reprint (preprint) with permission of 重庆大学学报期刊社. The paper can be found at the following official DOI: [http://dx.doi.org/10.11835/j.issn.1000-582X.2012.02.020].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.subjectDRNTU::Science::Medicine::Biomedical engineering
dc.title混合高斯过程回归模型在铁水硅含量预报中的应用 = Composite gaussian process regression model and its application to prediction of silicon content in hot metalen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.description.versionPublished versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record