Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/100388
Title: LEO satellite formation for SSP : energy and doppler analysis
Authors: Goh, Shu Ting
Zekavat, Seyed Alireza
Abdelkhalik, Ossama
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electronic systems
Issue Date: 2015
Source: Goh, S. T., Zekavat, S. A., & Abdelkhalik, O. (2015). LEO satellite formation for SSP : energy and doppler analysis. IEEE transactions on aerospace and electronic systems, 51(1), 18-30.
Series/Report no.: IEEE transactions on aerospace and electronic systems
Abstract: The space-based solar power (SBSP) concept was introduced during the 1970s. However, the technological challenges during that period stalled its development. Decaying natural energy resources, global warming, and geopolitical pressures have encouraged many countries and researchers to seek new reliable energy sources, such as SBSP. A solar power technology that comprises low Earth orbit (LEO) spacecraft formation has been proposed in the literature. All spacecraft in the LEO formation harvest solar energy and transmit the power to a leader spacecraft or the ground station simultaneously. In the proposed LEO technique, the high and varying relative speed within the spacecraft formation, and also within the spacecraft and the Earth, causes a nonhomogeneous Doppler spread during solar power transmission. This Doppler spread reduces SBSP power transmission efficiency. In this paper, first, the transmission link budget from LEO and geostationary orbits to the Earth are compared, and the harvested energy by the ground station on the Earth is investigated. This motivates low or mid Earth orbit satellite usage for SBSP. Next, considering different spacecraft configurations, the impact of the distance between each spacecraft and the ground station, and the distance between each spacecraft and the leader spacecraft on the variation of the Doppler frequency spread is investigated. In addition, the impact of the position of the leader spacecraft with respect to other spacecraft in the formation is studied. The results confirm that higher altitude or smaller formation size leads to lower Doppler frequency spread in the transmission between each spacecraft to the ground station (or leader spacecraft). Finally, several possible techniques to improve the wireless power transmission efficiency due to the Doppler effect are discussed and compared.
URI: https://hdl.handle.net/10356/100388
http://hdl.handle.net/10220/25711
ISSN: 0018-9251
DOI: http://dx.doi.org/10.1109/TAES.2014.120333
Rights: © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TAES.2014.120333].
metadata.item.grantfulltext: open
metadata.item.fulltext: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
2015_taes_dop2.pdf575.09 kBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.