View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Oxygenation mediating the valence density-of-states and work function of Ti(0001) skin

      Thumbnail
      Oxygenation mediating the valence density-of-states and work function.pdf (1.044Mb)
      Author
      Li, Lei
      Meng, Fanling
      Tian, Hongwei
      Hu, Xiaoying
      Zheng, Weitao
      Sun, Chang Qing
      Date of Issue
      2015
      School
      School of Electrical and Electronic Engineering
      Version
      Accepted version
      Abstract
      Consistency between density function theory calculations and photoelectron spectroscopy observations confirmed predictions based on the framework of bond-band-barrier (3B) correlation notation [Sun, Prog. Mater. Sci., 2003, 48, 521-685] that an oxygen adsorbate interacts with Ti(0001) skin atoms to form a tetrahedron with creation of four valence density-of-state features: O-Ti bonding electron pairs, O nonbonding lone pairs, Ti electronic holes, and Ti antibonding dipoles. Formation of the dipoles lowers the work function of the Ti(0001) skin and electron-hole generation turns the metallic Ti(0001) into the semiconductive O-Ti(0001). Findings confirm the universality of the 3B correlation in understanding the dynamics of oxygen chemisorption and the associated valence electrons involved in the process of oxidation.
      Subject
      DRNTU::Science::Chemistry::Physical chemistry
      Type
      Journal Article
      Series/Journal Title
      Physical chemistry chemical physics
      Rights
      © 2015 the Owner Societies 2015. This is the author created version of a work that has been peer reviewed and accepted for publication in Physical Chemistry Chemical Physics, published by Royal Society of Chemistry on behalf of the Owner Societies. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [http://dx.doi.org/10.1039/C4CP05985A].
      Collections
      • EEE Journal Articles
      http://dx.doi.org/10.1039/C4CP05985A
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG