Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96192
Title: State-of-charge estimation of lithium-ion battery using square root spherical unscented kalman filter (Sqrt-UKFST) in nanosatellite
Authors: Aung, Htet
Low, Kay Soon
Goh, Shu Ting
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electric power
Issue Date: 2015
Source: Aung, H., Low, K. S., & Goh, S. T. (2015). State-of-charge estimation of lithium-ion battery using square root spherical unscented kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Transactions on Power Electronics, 30(9), 4774-4783.
Series/Report no.: IEEE transactions on power electronics
Abstract: State of charge (SOC) estimation is an important aspect for modern battery management system. Dynamic and closed loop model-based methods such as extended Kalman filter (EKF) have been extensively used in SOC estimation. However, the EKF suffers from drawbacks such as Jacobian matrix derivation and linearization accuracy. In this paper, a new SOC estimation method based on square root unscented Kalman filter (Sqrt-UKFST) using spherical transform with unit hyper sphere is proposed. The Sqrt-UKFST does not require the linearization for nonlinear model and uses fewer sigma points with spherical transform, which reduces the computational requirement of traditional unscented transform. The square root characteristics improves the numerical properties of state covariance. The proposed method has been experimentally validated. The results are compared with existing SOC estimation methods such as Coulomb counting, portable fuel gauge and extended Kalman filter. The proposed method has an absolute root mean square error (RMSE) of 1.42% and an absolute maximum error of 4.96%. These errors are lower than the other three methods. When compared with EKF, it represents 37% and 44% improvement in RMSE and maximum error respectively. Furthermore, the Sqrt-UKFST is less sensitive to parameter variation than EKF and it requires 32% less computational requirement than the regular UKF.
URI: https://hdl.handle.net/10356/96192
http://hdl.handle.net/10220/38482
DOI: http://dx.doi.org/10.1109/TPEL.2014.2361755
Rights: © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TPEL.2014.2361755].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
State-of-Charge_Estimation.pdf686.54 kBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.