View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Biomass oxidation : formyl C-H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves

      Thumbnail
      Author
      Amaniampong, Prince Nana
      Trinh, Quang Thang
      Wang, Bo
      Borgna, Armando
      Yang, Yanhui
      Mushrif, Samir Hemant
      Date of Issue
      2015
      School
      School of Chemical and Biomedical Engineering
      Abstract
      An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.
      Subject
      DRNTU::Science::Chemistry::Physical chemistry::Catalysis
      DRNTU::Science::Chemistry::Organic chemistry::Oxidation
      Type
      Journal Article
      Series/Journal Title
      Angewandte Chemie International Edition
      Rights
      © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
      Collections
      • SCBE Journal Articles
      http://dx.doi.org/10.1002/anie.201503916
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG