Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99316
Title: Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model
Authors: Ong, Yi Hong
Zhu, Caigang
Liu, Quan
Issue Date: 2014
Source: Ong, Y. H., Zhu, C., & Liu, Q. (2014). Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model. Journal of Biomedical Optics, 19(8), 085006-.
Series/Report no.: Journal of biomedical optics
Abstract: Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we employed the Monte Carlo method to investigate the depth sensitivity achieved by various illumination and detection configurations including both the traditional cone configurations and new cone shell configurations, which are implemented by convex or axicon lenses. Phantom experiments have been carried out to validate the Monte Carlo modeling of fluorescence in a two-layered turbid, epithelial tissue model. The measured fluorescence and depth sensitivity of different illumination–detection configurations were compared with each other. The results indicate excellent agreement between the experimental and simulation results in the trends of fluorescence intensity and depth sensitivity. The findings of this study and the development of the Monte Carlo method for noncontact setups provide useful insight and assistance in the planning and optimization of optical designs for depth sensitive fluorescence measurements.
URI: https://hdl.handle.net/10356/99316
http://hdl.handle.net/10220/38554
ISSN: 1083-3668
DOI: 10.1117/1.JBO.19.8.085006
Rights: © 2014 Society of Photo-Optical Instrumentation Engineers. This paper was published in Journal of Biomedical Optics and is made available as an electronic reprint (preprint) with permission of Society of Photo-Optical Instrumentation Engineers. The published version is available at: [http://dx.doi.org/10.1117/1.JBO.19.8.085006]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
JBO_19_8_085006.pdf2.05 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.