dc.contributor.authorDutta, Bamaprasad
dc.contributor.authorRen, Yan
dc.contributor.authorHao, Piliang
dc.contributor.authorSim, Kae Hwan
dc.contributor.authorCheow, Esther
dc.contributor.authorAdav, Sunil S.
dc.contributor.authorTam, James Pingkwan
dc.contributor.authorSze, Siu Kwan
dc.date.accessioned2015-12-02T08:49:44Z
dc.date.available2015-12-02T08:49:44Z
dc.date.issued2014
dc.identifier.citationDutta, B., Ren, Y., Hao, P., Sim, K. H., Cheow, E., Adav, S., et al. (2014). Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression. Molecular & Cellular Proteomics, 13(9), 2183-2197.en_US
dc.identifier.urihttp://hdl.handle.net/10220/38900
dc.description.abstractThe chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1–S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity.en_US
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)
dc.language.isoenen_US
dc.relation.ispartofseriesMolecular & Cellular Proteomicsen_US
dc.rights© 2014 The American Society for Biochemistry and Molecular Biology, Inc. This is the author created version of a work that has been peer reviewed and accepted for publication by Molecular & Cellular Proteomics, The American Society for Biochemistry and Molecular Biology, Inc. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1074/mcp.M113.034975].en_US
dc.titleProfiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progressionen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1074/mcp.M113.034975
dc.description.versionAccepted version


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record