View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Mussel-Inspired Modification of Nanofibers for REST siRNA Delivery: Understanding the Effects of Gene-Silencing and Substrate Topography on Human Mesenchymal Stem Cell Neuronal Commitment

      Thumbnail
      Macro Bio 2015 WC.pdf (1.929Mb)
      Author
      Low, Wei Ching
      Rujitanaroj, Pim-On
      Lee, Dong-Keun
      Kuang, Jinghao
      Messersmith, Phillip B.
      Chan, Jerry Kok Yen
      Chew, Sing Yian
      Date of Issue
      2015
      School
      School of Chemical and Biomedical Engineering
      Lee Kong Chian School of Medicine (LKCMedicine)
      Version
      Accepted version
      Abstract
      In this study, we promote neuronal differentiation of human mesenchymal stem cells (MSCs) through scaffold-mediated sustained release of siRNA targeting RE-1 silencing transcription factor (REST). Poly (ϵ-caprolactone) nanofibers were surface modified with mussel inspired DOPA-melanin (DM) coating for adsorption of REST siRNA. DM modification increased siRNA-loading efficiency and reduced the initial burst release. Fiber alignment and DM modification enhanced REST knockdown efficiencies. Under non-specific differentiation condition, REST silencing and fiber topography enhanced MSC neuronal markers expressions and reduced glial cell commitment. Such scaffolds may find useful applications in enhancing MSCs neuronal differentiation under non-specific conditions such as an in vivo environment.
      Subject
      Electrospinning
      Neuronal differentiation
      Neural differentiation
      RE-1 silencing transcription factor
      Sustained release
      Type
      Journal Article
      Series/Journal Title
      Macromolecular Bioscience
      Rights
      © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the author created version of a work that has been peer reviewed and accepted for publication by Macromolecular Bioscience, WILEY-VCH Verlag GmbH & Co. KGaA. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1002/mabi.201500101].
      Collections
      • SCBE Journal Articles
      • LKCMedicine Journal Articles
      http://dx.doi.org/10.1002/mabi.201500101
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG