dc.contributor.authorWang, Peihong
dc.contributor.authorDu, Hejun
dc.date.accessioned2015-12-18T06:14:09Z
dc.date.available2015-12-18T06:14:09Z
dc.date.issued2015
dc.identifier.citationWang, P., & Du, H. (2015). ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Review of Scientific Instruments, 86(7), 075002-.en_US
dc.identifier.issn0034-6748en_US
dc.identifier.urihttp://hdl.handle.net/10220/39161
dc.description.abstractZinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s2. By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.en_US
dc.format.extent5 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesReview of Scientific Instrumentsen_US
dc.rights© 2015 AIP Publishing LLC. This paper was published in Review of Scientific Instruments and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4923456]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.titleZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performanceen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1063/1.4923456
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record