dc.contributor.authorZhang, Xi
dc.contributor.authorGe, Tong
dc.contributor.authorChang, Joseph Sylvester
dc.date.accessioned2015-12-30T02:06:58Z
dc.date.available2015-12-30T02:06:58Z
dc.date.issued2015
dc.identifier.citationZhang, X., Ge, T., & Chang, J. S. (2015). Fully-Additive Printed Electronics: Transistor model, process variation and fundamental circuit designs. Organic Electronics, 26, 371–379.en_US
dc.identifier.issn1566-1199en_US
dc.identifier.urihttp://hdl.handle.net/10220/39238
dc.description.abstractPrinted Electronics (PE) on flexible substrates (e.g. plastic-film) is an emerging technology that potentially complements silicon-based electronics. To facilitate the design and realization of PE analog and digital circuits for the augmentation of signal processing thereto, we present in this paper, a novel and comprehensive printed transistor model that is simple, accurate and compatible with industry-standard IC (integrated circuit) electronic design automation tools. Unlike reported models, the proposed comprehensive model accommodates and accurately models the effect of the channel length on carrier mobility, leakage current and parasitic capacitances, and is valid for all transistor operating regions, from cut-off to supra-threshold regions. The proposed comprehensive model further embodies process variations (statistical data) and matching based on various layout techniques. These comprehensive modelings are imperative for the practical design and simulation of PE circuits, including manufacturability and implications with respect to the challenges of PE circuits. On the basis of the proposed comprehensive model, several fundamental analog and digital PE circuits, based on conventional and novel methods, are designed and realized on plastic-films. Their measured parameters agree well with that obtained from simulations (using the model derived herein), depicting the efficacy of the comprehensive model. This model is particularly useful as it provides invaluable insights to PE circuit and system designers.en_US
dc.format.extent25 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesOrganic Electronicsen_US
dc.rights© 2015 Elsevier B.V. This is the author created version of a work that has been peer reviewed and accepted for publication by Organic Electronics, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.orgel.2015.07.058].en_US
dc.subjectPrinted Electronicsen_US
dc.subjectOrganic Electronics
dc.subjectModel
dc.subjectProcess Variation
dc.subjectFully-Additive
dc.titleFully-Additive Printed Electronics: Transistor model, process variation and fundamental circuit designsen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.orgel.2015.07.058
dc.description.versionAccepted versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record