dc.contributor.authorZhao, Yongqian
dc.contributor.authorSoh, Tingjin Sherryl
dc.contributor.authorLim, Siew Pheng
dc.contributor.authorChung, Ka Yan
dc.contributor.authorSwaminathan, Kunchithapadam
dc.contributor.authorVasudevan, Subhash G.
dc.contributor.authorShi, Pei-Yong
dc.contributor.authorLescar, Julien
dc.contributor.authorLuo, Dahai
dc.identifier.citationZhao, Y., Soh, T. S., Lim, S. P., Chung, K. Y., Swaminathan, K., Vasudevan, S. G., et al. (2015). Molecular basis for specific viral RNA recognition and 2'-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proceedings of the National Academy of Sciences of the United States of America, 112(48), 14834-14839.en_US
dc.description.abstractDengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5′ exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5′ RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5′ RNA cap: G0pppAG-RNA→m7G0pppAG-RNA (“cap-0”)→m7G0pppAm2′-O-G-RNA (“cap-1”). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5′-m7G0pppA1G2U3U4G5U6U7-3′), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2′-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses.en_US
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)
dc.format.extent21 p.en_US
dc.relation.ispartofseriesProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.rights© 2015 The Author(s) (Published by National Academy of Sciences). This is the author created version of a work that has been peer reviewed and accepted for publication by Proceedings of the National Academy of Sciences of the United States of America, The Author(s) (Published by National Academy of Sciences). It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1073/pnas.1514978112].en_US
dc.subjectDengue virusen_US
dc.subjectNonstructural protein 5 methyltransferase-polymeraseen_US
dc.subject2′-O-ribose methyltransferaseen_US
dc.subjectCap-0 RNAen_US
dc.subjectInnate immunity evasionen_US
dc.titleMolecular basis for specific viral RNA recognition and 2' -O-ribose methylation by the dengue virus nonstructural protein 5 (NS5)en_US
dc.typeJournal Article
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.contributor.schoolLee Kong Chian School of Medicine (LKCMedicine)
dc.description.versionAccepted Version

Files in this item


This item appears in the following Collection(s)

Show simple item record