View Item 
      •   Home
      • 1. Schools
      • Lee Kong Chian School of Medicine (LKCMedicine)
      • LKCMedicine Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • Lee Kong Chian School of Medicine (LKCMedicine)
      • LKCMedicine Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Minocycline hydrochloride entrapped biomimetic nanofibrous substitutes for adipose derived stem cells differentiation into osteogenesis

      Thumbnail
      Author
      Jayaraman, Praveena
      Gandhimathi, Chinnasamy
      Venugopal, Jayarama Reddy
      Ramakrishna, Seeram
      Srinivasan, Dinesh Kumar
      Date of Issue
      2016
      School
      Lee Kong Chian School of Medicine (LKCMedicine)
      Abstract
      Hybrid biocomposite nanofibrous structures that mimics native extracellular matrix have been extensively applied for bone tissue engineering (BTE) due to their potential in efficiently inducing cellular response for the secretion of extracellular matrix (ECM). This study performed fabrication of uniform porous polycaprolactone (PCL), polycaprolactone/silk fibroin (PCL/SF), polycaprolactone/silk fibroin/minocycline hydrochloride (PCL/SF/MH), polycaprolactone/collagen (PCL/COL), and polycaprolactone/collagen/minocycline hydrochloride (PCL/COL/MH) biocomposites nanofibrous scaffolds by electrospinning, for comparing their properties to use in bone tissue regeneration. Field emission scanning electron microscopy (FESEM) images of fabricated nanofibrous scaffolds revealed porous, beadless, uniform fibers of diameter in the range of 147.13 ± 28.02 to 176.53 ± 22.34 nm and porosity around 82–93 %. Adipose-derived stem cells (ADSCs) considered as the novel cell therapeutics were cultured on these electrospun fibrous scaffolds to undergo osteogenic differentiation for BTE. The cell morphology, proliferation, and interactions were analyzed by CMFDA dye extrusion, MTS assay, and FESEM analysis, respectively. Differentiation of ADSCs into osteogenesis was determined by alkaline phosphatase activity, mineralization by alizarin red staining, and osteogenic protein expression by immunofluorescence analysis. The results demonstrated that the addition of SF and MH to PCL-based scaffolds improved the mechanical stability, interconnected pores, and surface roughness of the scaffolds initiating heightened biological functions such as ADSCs adhesion, proliferation, differentiation, and mineralization into osteogenesis for bone tissue regeneration.
      Subject
      Polycaprolactone
      Silk fibroin
      Collagen
      Minocycline hydrochloride
      Mineralization
      Differentiation
      Bone tissue engineering
      Type
      Journal Article
      Series/Journal Title
      Regenerative Engineering and Translational Medicine
      Rights
      © 2016 The Regenerative Engineering Society.
      Collections
      • LKCMedicine Journal Articles
      http://dx.doi.org/10.1007/s40883-016-0010-y
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG