dc.contributor.authorMok, S.
dc.contributor.authorAshley, E. A.
dc.contributor.authorFerreira, P. E.
dc.contributor.authorZhu, L.
dc.contributor.authorLin, Z.
dc.contributor.authorYeo, T.
dc.contributor.authorChotivanich, K.
dc.contributor.authorImwong, M.
dc.contributor.authorPukrittayakamee, S.
dc.contributor.authorDhorda, M.
dc.contributor.authorNguon, C.
dc.contributor.authorLim, P.
dc.contributor.authorAmaratunga, C.
dc.contributor.authorSuon, S.
dc.contributor.authorHien, T. T.
dc.contributor.authorHtut, Y.
dc.contributor.authorFaiz, M. A.
dc.contributor.authorOnyamboko, M. A.
dc.contributor.authorMayxay, M.
dc.contributor.authorNewton, P. N.
dc.contributor.authorTripura, R.
dc.contributor.authorWoodrow, C. J.
dc.contributor.authorMiotto, O.
dc.contributor.authorKwiatkowski, D. P.
dc.contributor.authorNosten, F.
dc.contributor.authorDay, N. P. J.
dc.contributor.authorPreiser, P. R.
dc.contributor.authorWhite, N. J.
dc.contributor.authorDondorp, A. M.
dc.contributor.authorFairhurst, R. M.
dc.contributor.authorBozdech, Z.
dc.date.accessioned2016-09-19T04:06:57Z
dc.date.available2016-09-19T04:06:57Z
dc.date.issued2015
dc.identifier.citationMok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, S., Hien, T. T., Htut, Y., Faiz, M. A., Onyamboko, M. A., Mayxay, M., Newton, P. N., Tripura, R., Woodrow, C. J., Miotto, O., Kwiatkowski, D. P., Nosten, F., Day, N. P. J., Preiser, P. R., White, N. J., Dondorp, A. M., Fairhurst, R. M.,& Bozdech, Z. (2015). Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science, 347(6220), 431-435.en_US
dc.identifier.urihttp://hdl.handle.net/10220/41453
dc.description.abstractArtemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.en_US
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofseriesScienceen_US
dc.rights© 2016 American Association for the Advancement of Science.
dc.subjectMalaria parasitesen_US
dc.titlePopulation transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistanceen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1126/science.1260403


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record