dc.contributor.authorZhai, Xiao
dc.contributor.authorHou, Fei
dc.contributor.authorQin, Hong
dc.contributor.authorHao, Aimin
dc.identifier.citationZhai, X., Hou, F., Qin, H., & Hao, A. (2016). Inverse Modelling of Incompressible Gas Flow in Subspace. Computer Graphics Forum, in press.en_US
dc.description.abstractThis paper advocates a novel method for modelling physically realistic flow from captured incompressible gas sequence via modal analysis in frequency-constrained subspace. Our analytical tool is uniquely founded upon empirical mode decomposition (EMD) and modal reduction for fluids, which are seamlessly integrated towards a powerful, style-controllable flow modelling approach. We first extend EMD, which is capable of processing 1D time series but has shown inadequacies for 3D graphics earlier, to fit gas flows in 3D. Next, frequency components from EMD are adopted as candidate vectors for bases of modal reduction. The prerequisite parameters of the Navier–Stokes equations are then optimized to inversely model the physically realistic flow in the frequency-constrained subspace. The estimated parameters can be utilized for re-simulation, or be altered toward fluid editing. Our novel inverse-modelling technique produces real-time gas sequences after precomputation, and is convenient to couple with other methods for visual enhancement and/or special visual effects. We integrate our new modelling tool with a state-of-the-art fluid capturing approach, forming a complete pipeline from real-world fluid to flow re-simulation and editing for various graphics applications.en_US
dc.format.extent12 p.en_US
dc.relation.ispartofseriesComputer Graphics Forumen_US
dc.rights© 2016 The Authors, the Eurographics Association and John Wiley & Sons Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication in Computer Graphics Forum, published by John Wiley & Sons Ltd on behalf of the Authors, the Eurographics Association and John Wiley & Sons Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [http://dx.doi.org/10.1111/cgf.12861].en_US
dc.subjectModel reductionen_US
dc.titleInverse Modelling of Incompressible Gas Flow in Subspaceen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.description.versionAccepted versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record