Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/84955
Title: Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy
Authors: Agrawal, Manvi
Ravikiran, Lingaparthi
Dharmarasu, Nethaji
Radhakrishnan, K.
Karthikeyan, Giri Sadasivam
Zheng, Yuanjin
Keywords: Interface structure
III-V semiconductors
Issue Date: 2017
Source: Agrawal, M., Ravikiran, L., Dharmarasu, N., Radhakrishnan, K., Karthikeyan, G. S., & Zheng, Y. (2017). Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy. AIP Advances, 7(1), 015022-.
Series/Report no.: AIP Advances
Abstract: The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V∼1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm^2/V.s and sheet carrier density of 1×10^13 cm^−2.
URI: https://hdl.handle.net/10356/84955
http://hdl.handle.net/10220/42082
DOI: 10.1063/1.4974074
Rights: © 2017 The Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles
TL Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.