dc.contributor.authorGoh, K. B.
dc.contributor.authorLi, Hua
dc.contributor.authorLam, Khin Yong
dc.date.accessioned2017-05-26T06:55:01Z
dc.date.available2017-05-26T06:55:01Z
dc.date.issued2017
dc.identifier.citationGoh, K. B., Li, H., & Lam, K. Y. (2017). Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor. Biosensors and Bioelectronics, 91, 673-679.en_US
dc.identifier.issn0956-5663en_US
dc.identifier.urihttp://hdl.handle.net/10220/42498
dc.description.abstractA remarkable feature of biomaterials is their ability to deform in response to certain external bio-stimuli. Here, a novel biochemo-electro-mechanical model is developed for the numerical characterization of the urea-sensitive hydrogel in response to the external stimulus of urea. The urea sensitivity of the hydrogel is usually characterized by the states of ionization and denaturation of the immobilized urease, as such the model includes the effect of the fixed charge groups and temperature coupled with pH on the activity of the urease. Therefore, a novel rate of reaction equation is proposed to characterize the hydrolysis of urea that accounts for both the ionization and denaturation states of the urease subject to the environmental conditions. After examination with the published experimental data, it is thus confirmed that the model can characterize well the responsive behavior of the urea-sensitive hydrogel subject to the urea stimulus, including the distribution patterns of the electrical potential and pH of the hydrogel. The results point to an innovative means for generating electrical power via the enzyme-induced pH and electrical potential gradients, when the hydrogel comes in contact with the urea-rich solution, such as human urine.en_US
dc.format.extent26 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesBiosensors and Bioelectronicsen_US
dc.rights© 2017 Elsevier B. V. This is the author created version of a work that has been peer reviewed and accepted for publication by Biosensors and Bioelectronics, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.bios.2017.01.023].en_US
dc.subjectMultiphysics modelen_US
dc.subjectUrea-sensitive hydrogelen_US
dc.titleDevelopment of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensoren_US
dc.typeJournal Article
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.bios.2017.01.023
dc.description.versionAccepted versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record