Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80680
Title: Functionalization of the Polymeric Surface with Bioceramic Nanoparticles via a Novel, Nonthermal Dip Coating Method
Authors: Riau, Andri K.
Mondal, Debasish
Setiawan, Melina
Palaniappan, Alagappan
Yam, Gary H. F.
Liedberg, Bo
Venkatraman, Subbu S.
Mehta, Jodhbir Singh
Keywords: Bioceramic
Nanoparticles
Issue Date: 2016
Source: Riau, A. K., Mondal, D., Setiawan, M., Palaniappan, A., Yam, G. H. F., Liedberg, B., et al. (2016). Functionalization of the Polymeric Surface with Bioceramic Nanoparticles via a Novel, Nonthermal Dip Coating Method. ACS Applied Materials & Interfaces, 8(51), 35565-35577.
Series/Report no.: ACS Applied Materials & Interfaces
Abstract: The only nonthermal method of depositing a bioceramic-based coating on polymeric substrates is by incubation in liquid, e.g., simulated body fluid to form an apatite-like layer. The drawbacks of this method include the long processing time, the production of low scratch resistant coating, and an end product that does not resemble the intended bioceramic composition. Techniques, such as plasma spraying and magnetron sputtering, involving high processing temperature are unsuitable for polymers, e.g., PMMA. Here, we introduce a nonthermal coating method to immobilize hydroxyapatite (HAp) and TiO2 nanoparticles on PMMA via a simple and fast dip coating method. Cavities that formed on the PMMA, induced by chloroform, appeared to trap the nanoparticles which accumulated to form layers of bioceramic coating only after 60 s. The resulting coating was hydrophilic and highly resistant to delamination. In the context of our research and to address the current clinical need, we demonstrate that the HAp-coated PMMA, which is intended to be used as a visual optic of a corneal prosthetic device, improves its bonding and biointegration with collagen, the main component of a corneal stroma. The HAp-coated PMMA resulted in better adhesion with the collagen than untreated PMMA in artificial tear fluid over 28 days. Human corneal stromal fibroblasts showed better attachment, viability, and proliferation rate on the HAp-coated PMMA than on untreated PMMA. This coating method is an innovative solution to immobilize various bioceramic nanoparticles on polymers and may be used in other biomedical implants.
URI: https://hdl.handle.net/10356/80680
http://hdl.handle.net/10220/43428
ISSN: 1944-8244
DOI: http://dx.doi.org/10.1021/acsami.6b12371
Rights: © 2016 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by ACS Applied Materials & Interfaces, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acsami.6b12371].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
Functionalization of the Polymeric Surface with Bioceramic Nanoparticles.pdf3.43 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.