View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by Country/RegionMost Popular Authors

      About DR-NTU

      Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor

      Thumbnail
      Real-time and Non-invasive Monitoring of Embryonic Stem Cell Survival.pdf (348.0Kb)
      Author
      Fu, Jiayin
      Wiraja, Christian
      Chong, Ruiqi
      Xu, Chenjie
      Wang, Dong-An
      Date of Issue
      2016
      School
      School of Chemical and Biomedical Engineering
      Research Centre
      NTU-Northwestern Institute for Nanomedicine
      Version
      Accepted version
      Abstract
      Embryonic stem cells (ESCs)-derived embryoid body (EB) is a powerful model for the study of early embryonic development and the discovery of therapeutics for tissue regeneration. This article reports a smart nanosensor platform for labeling and tracking the survival and distribution of ESCs during the EB development in a real-time and non-invasive way. Compared with the cell tracker (i.e. DiO) and the green fluorescent protein (GFP), nanosensors provide the homogenous and highly-efficient ESC labeling. Following the internalization, intracellular nanosensors gradually release the non-fluorescent molecules that become fluorescent only in viable cells. This allows a continuous monitoring of ESC survival and distribution during the process of EB formation. Finally, we confirm that nanosensor labeling does not cause the significant influences to biological properties of the ESCs and EBs.
      Subject
      Embryonic stem cell
      Embryoid body
      Type
      Journal Article
      Series/Journal Title
      Acta Biomaterialia
      Rights
      © 2016 Acta Materialia Inc. (published by Elsevier Ltd.). This is the author created version of a work that has been peer reviewed and accepted for publication in Acta Biomaterialia, published by Elsevier Ltd. on behalf of Acta Materialia Inc. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [http://dx.doi.org/10.1016/j.actbio.2016.11.027].
      Collections
      • SCBE Journal Articles
      http://dx.doi.org/10.1016/j.actbio.2016.11.027
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG