Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/85739
Title: Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses
Authors: Loisel, Loïc
Châtelet, Marc
Giudicelli, Guillaume
Lebihain, Mathias
Yang, Yi
Cojocaru, Costel-Sorin
Constantinescu, Andrei
Tay, Beng Kang
Lebental, Bérengère
Keywords: Carbon allotropes
Laser pulses
Issue Date: 2016
Source: Loisel, L., Châtelet, M., Giudicelli, G., Lebihain, M., Yang, Y., Cojocaru, C.-S., et al. (2016). Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses. Carbon, 105, 227-232.
Series/Report no.: Carbon
Abstract: Laser pulses can effectively induce local structural changes and modify the physical properties of carbon allotropes. So far, only graphitization has been demonstrated using low laser energies (≤1 J/cm2). The novelty of this paper is a result of laser-induced amorphization of a highly anisotropic carbon allotrope by using high energy (1.5–15.4 J/cm2) 5 ns, 532 nm Nd-YAG laser pulses. Moreover, cycling phase change, between an amorphous and a crystalline phase, is also obtained by adjusting the pulse energy. However, cycling ability is restricted to a few cycles as a consequence of laser-induced surface damages caused by both high temperatures during and high thermal gradients during and after laser exposure. The occurrence of graphitization or amorphization depends on the amount of solid crystalline seeds during solidification from the melt, which is controlled by the post-pulse temperature of the carbon surface. This study uncovers new applications of carbon allotropes, such as optically-controlled reversible phase-change memories.
URI: https://hdl.handle.net/10356/85739
http://hdl.handle.net/10220/43805
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2016.04.026
Rights: © 2016 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Carbon, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.carbon.2016.04.026].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.