Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/85795
Title: Investigation of the Interaction of Polar Molecules on Graphite Surface: Prediction of Isosteric Heat of Adsorption at Zero Surface Coverage
Authors: Fan, Wu
Chakraborty, Anutosh
Keywords: Graphite
Isosteric Heat of Adsorption
Issue Date: 2016
Source: Fan, W., & Chakraborty, A. (2016). Investigation of the Interaction of Polar Molecules on Graphite Surface: Prediction of Isosteric Heat of Adsorption at Zero Surface Coverage. Journal of Physical Chemistry C, 120(41), 23490-23499.
Series/Report no.: Journal of Physical Chemistry C
Abstract: The interactions of polar molecules with various orientations on graphite surface are calculated employing molecular simulation under static conditions in which the multiple-sites Lennard-Jones (LJ), electrostatic, and dipole induction potentials are considered. The Henry’s constant and the potential energy as a function of polar molecule–graphite separation distance (z) are used to calculate the isosteric heat of adsorption at zero surface coverage (qsto), and the results are compared to experimentally measure qsto data of various polar molecules such as water, ammonia, methanol, and ethanol + graphite systems. The maximum qsto values are observed for the z values ranging from 2.5 to 4 Å with respect to various polar molecule orientations. The LJ potential contributes more than 90% and the induction potential adds less than 10% of total potentials at the maximum potential well depth, whereas the electrostatic contributions are found to be less than 1% of total potential energy. It is also found that the induction potential increases exponentially for the separation distance decreasing from 3 to 0 Å for all polar molecules presented in this Article.
URI: https://hdl.handle.net/10356/85795
http://hdl.handle.net/10220/43839
ISSN: 1932-7447
DOI: http://dx.doi.org/10.1021/acs.jpcc.6b06119
Rights: © 2016 American Chemical Society.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.