Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/86290
Title: CO2-assisted compression-adsorption hybrid for cooling and desalination
Authors: Ali, Syed Muztuza
Chakraborty, Anutosh
Leong, Kai Choong
Keywords: Adsorption
CO2 cycle
Issue Date: 2017
Source: Ali, S. M., Chakraborty, A., & Leong, K. C. (2017). CO2-assisted compression-adsorption hybrid for cooling and desalination. Energy Conversion and Management, 143, 538-552.
Series/Report no.: Energy Conversion and Management
Abstract: This paper presents a novel compression-adsorption hybrid that symbiotically combines adsorption and CO2 compression cooling devices. The seemingly low efficiency of each cycle individually is overcome by an amalgamation with the other. Hence, both heat and water vapour refrigerant mass are recovered for continuous cooling and desalination. Two different configurations are presented. The first configuration deals with a two-stage heat recovery system. At the first stage, heat is recovered from the compressed carbon dioxide to drive the adsorption device. The second stage heat recovery system internally exchanges heat between the low pressure and high pressure refrigerants of the CO2 cycle. The second configuration is proposed with an additional third-stage heat recovery from the gas cooler to the high pressure evaporator of the adsorption cycle. The water vapour mass is recovered from bed-to-bed adsorption at relatively higher pressure. A detailed thermodynamic framework is presented to simulate the performances in terms of COP (coefficient of performance), SCP (specific cooling power), SDWP (specific daily water production), PR (performance ratio) and OCR (overall conversion ratio). It is found that the overall COP is improved by more than 60% as compared to the conventional CO2 cycle, and in addition, the system generates 12.7 m3 of desalinated water per tonne of silica gel per day as extra benefits. Furthermore, both the heat and mass recoveries improve the overall conversion ratio, which is almost double as compared to the conventional CO2 cycle.
URI: https://hdl.handle.net/10356/86290
http://hdl.handle.net/10220/43996
ISSN: 0196-8904
DOI: http://dx.doi.org/10.1016/j.enconman.2017.04.009
Rights: © 2017 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Energy Conversion and Management, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.enconman.2017.04.009].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
CO2-assisted compression-adsorption hybrid for cooling and desalination.pdf1.59 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.