View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      TJET: Ternary Join-Exit-Tree Based Dynamic Key Management for Vehicle Platooning

      Thumbnail
      TJET Ternary JoinExitTree Based Dynamic Key Management for Vehicle Platooning.pdf (6.557Mb)
      Author
      Xu, Chang
      Lu, Rongxing
      Wang, Huaxiong
      Zhu, Liehuang
      Huang, Cheng
      Date of Issue
      2017
      School
      School of Physical and Mathematical Sciences
      Version
      Published version
      Abstract
      Vehicle platooning, which is formed by a group of vehicles traveling in close proximity to one another, nose-to-tail, at highway speeds, has received considerable attention in recent years. However, though it brings many opportunities in self-driving, the security of vehicle platooning is still challenging. In this paper, to secure vehicle platooning, particularly to secure communication and efficient key updating for vehicles in a platoon, we first present the notion of ternary join exit tree. A ternary join exit tree consists of main tree, join tree, and exit tree. The users join in the join tree and leave from exit tree. Then, we propose a new dynamic ternary join-exit tree-based dynamic key management scheme, called TJET, for vehicle platooning, which is characterized by providing efficient key updating for not only vehicle joining and leaving, but also platoon merging and splitting. Specifically, based on the structure of ternary join-exit tree, we devise concrete algorithms for vehicle joining, vehicle exiting, platoon merging, and splitting. Moreover, we also analyze the capacities and activation conditions of join tree and exit tree based on strict mathematical proofs. Detailed security analysis show that our proposed TJET holds desirable security properties including forward security, backward security, and resistance to key control. In addition, performance evaluations via extensive simulations demonstrate the efficiency of TJET.
      Subject
      Vehicle Platooning
      Security
      Type
      Journal Article
      Series/Journal Title
      IEEE Access
      Rights
      © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1109/ACCESS.2017.2753778
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG