dc.contributor.authorSeeni, Razina Z.
dc.contributor.authorYu, Xiaojun
dc.contributor.authorChang, Hao
dc.contributor.authorChen, Peng
dc.contributor.authorLiu, Linbo
dc.contributor.authorXu, Chenjie
dc.identifier.citationSeeni, R. Z., Yu, X., Chang, H., Chen, P., Liu, L., & Xu, C. (2017). Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin. ACS Applied Materials & Interfaces, 9(24), 20340-20347.en_US
dc.description.abstractIn recent years, polymeric microneedles (MNs) have attracted keen interests among researchers because of their applicability in transdermal drug delivery and interstitial skin fluid (ISF) extraction. When designing and characterizing such devices, it is critical to monitor their real-time in vitro and in vivo performances to optimize the desired effects, yet most of the existing methods are incapable of such functions. To address this unmet need, we develop a real-time noninvasive imaging methodology by integrating iron oxide (Fe3O4) nanoparticles into polymeric MNs to enhance image contrast for micro-optical coherence tomography (μOCT) imaging. Using the Fe3O4-integrated polystyrene-block-poly(acrylic acid) (PS-b-PAA) MNs as an example, we evaluate the influences of Fe3O4 concentrations on contrast enhancement in μOCT imaging and visualize the real-time swelling process of polymeric MNs in biological samples for the first time. Our results show that a concentration of ∼4–5 wt % Fe3O4 nanoparticles not only helps achieve the best contrast-to-noise ratio in μOCT imaging, which is 10 times higher than that without Fe3O4 nanoparticles in air and hydrogel, but also enables the real-time changes in the profile of MNs to be observed clearly in their swelling process in skin tissues. On the basis of such findings, we utilize the optimized concentration of Fe3O4 nanoparticles to further quantitatively study the swelling kinetics of PS-b-PAA MNs in agarose hydrogel and fresh skin tissues, which lasts ∼20 and ∼30–35 s, respectively. The suitability of such a methodology for enhancing μOCT imaging would greatly facilitate the development and clinical translation of MN-based medical technologies.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)en_US
dc.format.extent15 p.en_US
dc.relation.ispartofseriesACS Applied Materials & Interfacesen_US
dc.rights© 2017 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by ACS Applied Materials & Interfaces, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acsami.7b00481].en_US
dc.subjectIron Oxide Nanoparticlesen_US
dc.titleIron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skinen_US
dc.typeJournal Article
dc.contributor.researchNTU-Northwestern Institute for Nanomedicineen_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.versionAccepted versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record