View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration

      Thumbnail
      Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration.pdf (2.522Mb)
      Author
      Goh, Catherine Wenhui
      Lee, Irene Chengjie
      Sundaram, Jeyapriya Rajameenakshi
      George, Simi Elizabeth
      Yusoff, Permeen
      Brush, Matthew Hayden
      Sze, Newman Siu Kwan
      Shenolikar, Shirish
      Date of Issue
      2018
      School
      School of Biological Sciences
      Version
      Published version
      Abstract
      Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34−/− cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.
      Subject
      Oxidative Stress
      Phosphoprotein Phosphatase 1 (PP1)
      Type
      Journal Article
      Series/Journal Title
      Journal of Biological Chemistry
      Rights
      This research was originally published in the Journal of Biological Chemistry. © 2018 The American Society for Biochemistry and Molecular Biology. The published version is available at: [http://dx.doi.org/10.1074/jbc.M117.814111]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
      Collections
      • SBS Journal Articles
      http://dx.doi.org/10.1074/jbc.M117.814111
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG