dc.contributor.authorManuputty, Manoel Y.
dc.contributor.authorAkroyd, Jethro
dc.contributor.authorMosbach, Sebastian
dc.contributor.authorKraft, Markus
dc.date.accessioned2018-03-07T04:24:16Z
dc.date.available2018-03-07T04:24:16Z
dc.date.issued2017
dc.identifier.citationManuputty, M. Y., Akroyd, J., Mosbach, S., & Kraft, M. (2017). Modelling TiO2 formation in a stagnation flame using method of moments with interpolative closure. Combustion and Flame, 178,135-147.en_US
dc.identifier.issn0010-2180en_US
dc.identifier.urihttp://hdl.handle.net/10220/44523
dc.description.abstractThe stagnation flame synthesis of titanium dioxide nanoparticles from titanium tetraisopropoxide (TTIP) is modelled based on a simple one-step decomposition mechanism and one-dimensional stagnation flow. The particle model, which accounts for nucleation, surface growth, and coagulation, is fully-coupled to the flow and the gas phase chemistry and solved using the method of moments with interpolative closure (MoMIC). The model assumes no formation of aggregates considering the high temperature of the flame. In order to account for the free-jet region in the flow, the computational distance, H = 1.27 cm, is chosen based on the observed flame location in the experiment (for nozzle-stagnation distance, L = 3.4 cm). The model shows a good agreement with experimentally measured mobility particle size for stationary stagnation surface with varying TTIP loading, although the particle geometric standard deviation, GSD, is underpredicted for high TTIP loading. The particle size is predicted to be sensitive to the sampling location near the stagnation surface in the modelled flame. The sensitivity to the sampling location is found to increase with increasing precursor loading and stagnation temperature. Lastly, the effect of surface growth is evaluated by comparing the result with an alternative reaction model. It is found that surface growth plays an important role in the initial stage of particle growth which, if neglected, results in severe underprediction of particle size and overprediction of particle GSD.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.format.extent30 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesCombustion and Flameen_US
dc.rights© 2017 The Combustion Institute (published by Elsevier). This is the author created version of a work that has been peer reviewed and accepted for publication in Combustion and Flame, published by Elsevier on behalf of The Combustion Institute. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [http://dx.doi.org/10.1016/j.combustflame.2017.01.005].en_US
dc.subjectTitanium Dioxideen_US
dc.subjectNanoparticleen_US
dc.titleModelling TiO 2 formation in a stagnation flame using method of moments with interpolative closureen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.combustflame.2017.01.005
dc.description.versionAccepted versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record