Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/88194
Title: Mechanical properties of bundled carbon nanoscroll
Authors: Huang, Jie
Wong, Chee How
Keywords: Bundled CNS
Tension
Issue Date: 2015
Source: Huang, J., & Wong, C. (2015). Mechanical properties of bundled carbon nanoscroll. Mechanics of Materials, 87, 1-10.
Series/Report no.: Mechanics of Materials
Abstract: The self-rolling process of single-layer graphene around a core SWCNT leads to the formation of a spiral structure – a carbon nanoscroll (CNS), which is topologically open with two slippery free edges along its axial direction. By using molecular dynamics simulations, the mechanical properties of single CNS were studied. In addition, three individual single CNS samples were put together as a bundle to study the effect of bundling on the mechanical properties. Since CNS exhibits open slippery edges, three different configurations of bundled CNS were simulated to investigate the effect of the orientation of the slippery edges on the mechanical properties as well. We found that bundled CNS is capable of resisting approximately three times the external tensile loading compared to their single counterpart although they fail at the same strain. Additionally, upon compression, the bundled CNS buckled at a slightly lower critical strain with an ultimate strength almost three times that of single sample. Torsional properties have also been investigated. The simulation results showed that the bundled CNS failed at a smaller twisted angle per unit length with a much higher ultimate torque compared to the single CNS. Last but not least, we found the orientation of the slippery edges of the bundled CNS sample exhibits negligible influence on the mechanical properties.
URI: https://hdl.handle.net/10356/88194
http://hdl.handle.net/10220/44573
ISSN: 0167-6636
DOI: http://dx.doi.org/10.1016/j.mechmat.2015.03.008
Rights: © 2015 Elsevier Ltd.
metadata.item.grantfulltext: none
metadata.item.fulltext: No Fulltext
Appears in Collections:MAE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.