dc.contributor.authorDabir, Fatemeh
dc.contributor.authorSarraf-Mamoory, Rasoul
dc.contributor.authorLoeblein, Manuela
dc.contributor.authorTsang, Siu Hon
dc.contributor.authorTeo, Edwin Hang Tong
dc.date.accessioned2018-06-08T04:03:59Z
dc.date.available2018-06-08T04:03:59Z
dc.date.issued2015
dc.identifier.citationDabir, F., Sarraf-Mamoory, R., Loeblein, M., Tsang, S. H., & Teo, E. H. T. (2016). Effect of annealing temperature on physical properties of nanostructured TiN/3DG composite. Materials & Design, 90, 524-531.en_US
dc.identifier.issn0261-3069en_US
dc.identifier.urihttp://hdl.handle.net/10220/44999
dc.description.abstractRecently, three-dimensional graphene (3DG) has attracted much attention in many research fields due to its unique structure and considerable properties. In order to expand the range of applications of 3DG, the suitable nanomaterials can be grown on its surface. In this study, titanium nitride (TiN) phase was deposited on 3DG porous structure by chemical method. This method contains two steps of immersing 3DG into a solution containing Ti ions and then annealing under ammonia atmosphere. The effect of annealing temperature on type of synthesized phases, their morphology, and stoichiometry was investigated. For this purpose, the samples were annealed at different temperatures (750–900 °C) and analyzed via various techniques. The results showed that increasing annealing temperature results in increased crystallite size and lattice constant, while decreased oxygen content in TiN structure. Annealing at 850 °C resulted in the most stoichiometric composition with titanium/nitrogen atomic ratio of 1.09, which had the lowest electrical resistivity of 0.41 Ω cm and lowest work function of 4.68 eV. After applying TiN, the water contact angle of 3DG (127°) was reduced to lower than 90°. Such TiN/3DG composite can be a promising candidate as an electrode in solar cells.en_US
dc.description.sponsorshipASTAR (Agency for Sci., Tech. and Research, S’pore)en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofseriesMaterials & Designen_US
dc.rights© 2015 Elsevier Ltd.en_US
dc.subjectTitanium Nitrideen_US
dc.subjectThree-dimensional Grapheneen_US
dc.titleEffect of annealing temperature on physical properties of nanostructured TiN/3DG compositeen_US
dc.typeJournal Article
dc.contributor.researchResearch Techno Plazaen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.matdes.2015.10.152


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record