Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/87055
Title: The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens
Authors: Yang, Jie
Zhen, Xu
Wang, Bin
Gao, Xuming
Ren, Zichun
Wang, Jiaqiang
Xie, Yujun
Li, Jianrong
Peng, Qian
Pu, Kanyi
Li, Zhen
Keywords: Room Temperature Phosphorescence
Molecular
Issue Date: 2018
Source: Yang, J., Zhen, X., Wang, B., Gao, X., Ren, Z., Wang, J., et al. (2018). The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 9(1), 840-.
Series/Report no.: Nature Communications
Abstract: Organic luminogens with persistent room temperature phosphorescence (RTP) have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, these materials are still very scarce, partially due to the unclear mechanism and lack of designing guidelines. Herein we develop seven 10-phenyl-10H-phenothiazine-5,5-dioxide-based derivatives, reveal their different RTP properties and underlying mechanism, and exploit their potential imaging applications. Coupled with the preliminary theoretical calculations, it is found that strong π–π interactions in solid state can promote the persistent RTP. Particularly, CS-CF3 shows the unique photo-induced phosphorescence in response to the changes in molecular packing, further confirming the key influence of the molecular packing on the RTP property. Furthermore, CS-F with its long RTP lifetime could be utilized for real-time excitation-free phosphorescent imaging in living mice. Thus, our study paves the way for the development of persistent RTP materials, in both the practical applications and the inherent mechanism.
URI: https://hdl.handle.net/10356/87055
http://hdl.handle.net/10220/45309
DOI: http://dx.doi.org/10.1038/s41467-018-03236-6
Rights: © 2018 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.