Please use this identifier to cite or link to this item:
Title: NMR structure, dynamics and interactions of the integrin β2 cytoplasmic tail with filamin domain IgFLNa21
Authors: Chatterjee, Deepak
Tan, Suet-Mien
Bhattacharjya, Surajit
Lu, Lewis Zhiping
Keywords: Integrin
Nuclear Magnetic Resonance (NMR)
Issue Date: 2018
Source: Chatterjee, D., Lu, L. Z., Tan, S.-M., & Bhattacharjya, S. (2018). NMR structure, dynamics and interactions of the integrin β2 cytoplasmic tail with filamin domain IgFLNa21. Scientific Reports, 8(1), 5490-.
Series/Report no.: Scientific Reports
Abstract: Integrins are transmembrane proteins that mediate cell adhesion and migration. Each integrin is a heterodimer formed by an α and a β subunit. A large number of cytoplasmic proteins interact with the cytoplasmic tails (CTs) of integrins. The actin-binding cytoskeletal protein filamin A is a negative regulator of integrin activation. The IgFLNa21 domain of filamin A binds to the C-terminus of β2 CT that contains a TTT-motif. Based on x-ray crystallography, it has been reported that the integrin β2 CT forms a β strand that docks into the β strands C and D of IgFLNa21. In this study, we performed solution NMR analyses of IgFLNa21 in the presence of integrin β2 CT peptides, and hybrid IgFLNa21, a construct of covalently linked IgFLNa21 and β2 CT. The atomic resolution structure of the hybrid IgFLNa21 demonstrated conserved binding mode with β2 CT. Although, 15N relaxation, model free analyses and H-D exchange studies have uncovered important insights into the conformational dynamics and stability of β2 CT in complex with IgFLNa21. Such dynamical characteristics are likely to be necessary for the TTT-motif to serve as a phosphorylation switch that regulates filamin A binding to integrin β2 CT.
ISSN: 2045-2322
DOI: 10.1038/s41598-018-23866-6
Rights: © 2018 The Author(s) (Nature Publishing Group). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.