Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/88314
Title: Sensitization, energy transfer and infra-red emission decay modulation in Yb3+-doped NaYF4 nanoparticles with visible light through a perfluoroanthraquinone chromophore
Authors: Lu, Haizhou
Peng, Yu
Ye, Huanqing
Cui, Xianjin
Hu, Jianxu
Gu, Hang
Khlobystov, Andrei N.
Green, Mark A.
Blower, Philip J.
Wyatt, Peter B.
Gillin, William P.
Hernández, Ignacio
Keywords: Chromophore
Nanoparticles
DRNTU::Science::Physics
Issue Date: 2017
Source: Lu, H., Peng, Y., Ye, H., Cui, X., Hu, J., Gu, H., . . . Hernández, I. (2017). Sensitization, energy transfer and infra-red emission decay modulation in Yb3+-doped NaYF4 nanoparticles with visible light through a perfluoroanthraquinone chromophore. Scientific Reports, 7, 5066-. doi:10.1038/s41598-017-05350-9
Series/Report no.: Scientific Reports
Abstract: Infra-red emission (980 nm) of sub 10 nm Yb3+-doped NaYF4 nanoparticles has been sensitized through the excitation of 2-hydroxyperfluoroanthraquinone chromophore (1,2,3,4,5,6,7-heptafluro-8-hydroxyanthracene-9,10-dione) functionalizing the nanoparticle surface. The sensitization is achieved with a broad range of visible light excitation (400–600 nm). The overall near infra-red (NIR) emission intensity of Yb3+ ions is increased by a factor 300 as a result of the broad and strong absorption of the chromophore compared with ytterbium’s intrinsic absorption. Besides the Yb3+ NIR emission, the hybrid composite shows organic chromophore-based visible emission in the orange-red region of the spectrum. We observe the energy migration process from the sensitized Yb3+ ions at the surface to those in the core of the particle using time-resolved optical spectroscopy. This highlights that the local environments for emitting Yb3+ ions at the surface and center of the nanoparticle are not identical, which causes important differences in the NIR emission dynamics. Based on the understanding of these processes, we suggest a simple strategy to control and modulate the decay time of the functionalized Yb3+-doped nanoparticles over a relatively large range by changing physical or chemical parameters in this model system.
URI: https://hdl.handle.net/10356/88314
http://hdl.handle.net/10220/45665
ISSN: 2045-2322
DOI: 10.1038/s41598-017-05350-9
Rights: © 2017 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.