Please use this identifier to cite or link to this item:
Title: On signed Young permutation modules and signed p-Kostka numbers
Authors: Giannelli, Eugenio
Lim, Kay Jin
O’Donovan, William
Wildon, Mark
Keywords: Permutation
Young Modules
Issue Date: 2017
Source: Giannelli, E., Lim, K. J., O’Donovan, W., & Wildon, M. (2017). On signed Young permutation modules and signed p-Kostka numbers. Journal of Group Theory, 20(4), 637–679. doi:10.1515/jgth-2017-0007
Series/Report no.: Journal of Group Theory
Abstract: We prove the existence and main properties of signed Young modules for the symmetric group, using only basic facts about symmetric group representations and the Broué correspondence. We then prove new reduction theorems for the signed p-Kostka numbers, defined to be the multiplicities of signed Young modules as direct summands of signed Young permutation modules. We end by classifying the indecomposable signed Young permutation modules and determining their endomorphism algebras.
ISSN: 1433-5883
DOI: 10.1515/jgth-2017-0007
Rights: © 2017 Walter de Gruyter GmbH. This paper was published in Journal of Group Theory and is made available as an electronic reprint (preprint) with permission of Walter de Gruyter GmbH. The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
On signed Young permutation modules and signed p-Kostka numbers.pdf481 kBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.