Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/89231
Title: Cavity QED of superradiant phase transition in two dimensional materials
Authors: Li, Benliang
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 4-Oct-2018
Source: Li, B. (2018). Cavity QED of superradiant phase transition in two dimensional materials. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: This thesis consists of two parts. In the first part, the light-matter coupling between cyclotron transition and photon is theoretically investigated in some 2-D materials such as the monolayer MoS2, graphene and monolayer black phosphorene (BP) systems. The results show that, in these 2-D materials, the ultrastrong light-matter coupling can be achieved at a high filling factor of Landau levels. Furthermore, we show that, in contrast to the case for conventional semiconductor resonators, the MoS2 system shows a vacuum instability. In monolayer MoS2 resonator, the diamagnetic term can still play an important role in determining magnetopolariton dispersion which is different from monolayer graphene system. The diamagnetic term arises from electron-hole asymmetry which indicates that electron-hole asymmetry can influence the quantum phase transition. Meanwhile, we show that, similar with some other 2D materials such as graphene and MoS2, the monolayer BP system shows a vacuum instability. However, in contrast with other 2D materials, the BP system displays a large energy gap between three branches of polaritons because of its strong anisotropic behavior in the eigenstates of the band structures. For the graphene system, we investigate the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. At last, in contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our study provides new insights in cavity-controlled magneto-transport in these 2-D systems, which could lead to the development of polariton-based devices. The second part is a diversion from the main content of this thesis; readers who are not interested in foundational issues of physics can skip this part. For one charged quantum particle P moving in an electromagnetic vector potential created by some other charged particles, we can either use the framework of one particle quantum mechanics (OPQM) to calculate the evolutions of P, or we can treat this as an multi-particles problem in the framework of quantum field theory and calculate the evolution of P. These two methods need to be equavalent, i.e., they produce the same result for the evolution of P. One open question is how to describe the evolution of P within the framework of quantum field theory and show that these two methods yield the same result? In chapter 5, we are going to derive the OPQM from the quantum field theory, i.e., the quantum electrodynamics (QED) to be specific. We start with the discussions on the AB effect then raise a plausible interpretation within the QED framework. We provide a quantum treatment of the source of the electromagnetic potential and argue that the underlying mechanism in AB effect can be viewed as interactions between electrons described by QED theory where the interactions are mediated by virtual photons. On further analysis, we show that the framework of one particle quantum mechanics (OPQM) can be given, in general, as a mathematically approximated model which is reformulated from QED theory while the AB effect scheme provides a platform for our derivations. In addition, the classical Maxwell equations are derived from QED scattering process while both classical electromagnetic fields and potentials serve as mathematical tools that are constructed to approximate the interactions among elementary particles described by QED physics. This work opens up a new perspective on the nature of electromagnetic fields and potentials.
URI: https://hdl.handle.net/10356/89231
http://hdl.handle.net/10220/46220
DOI: https://doi.org/10.32657/10220/46220
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
li benliang PhD thesis.pdfmain article2.76 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.