Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/102225
Title: Circuit model of microstrip patch antenna on ceramic land grid array package for antenna-chip codesign of highly integrated RF transceivers
Authors: Wang, Jun Jun
Zhang, Yue Ping
Chua, Kai Meng
Lu, Albert Chee Wai
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2005
Source: Wang, J. J., Zhang, Y. P., Chua, K. M., & Lu, A. C. W. (2005). Circuit model of microstrip patch antenna on ceramic land grid array package for antenna-chip codesign of highly integrated RF transceivers. IEEE Transactions on Antennas and Propagation, 53(12), 3877-3883.
Series/Report no.: IEEE transactions on antennas and propagation
Abstract: This paper presents the circuit model of a microstrip patch antenna on a ceramic land grid array (CLGA) package for the antenna-chip codesign of a highly integrated radio-frequency (RF) transceiver. The microstrip patch antenna is fed by packaging interconnect components such as bond wires, signal traces, and vias in a ground-signal-ground (G-S-G) configuration from the carried chip. The circuit model that consists of RLC lumped elements of both microstrip patch antenna and feeding interconnect components has been developed with an emphasis on verifying existing or deriving analytical formulas. The RLC values of the microstrip patch antenna are calculated with our improvements to existing computer-aided design formulas, while the RLC values of the feeding interconnect components are calculated with more efforts. In particular the C values related to the vias and signal traces require to be calculated numerically and they are calculated here with the method of moments and the conformal mapping method, respectively. The circuit model is validated with numerical simulations (High Frequency Structure Simulator) and network analyzer measurements.
URI: https://hdl.handle.net/10356/102225
http://hdl.handle.net/10220/4649
ISSN: 0018-926X
Rights: © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.