Please use this identifier to cite or link to this item:
Title: Classification of adaptive memetic algorithms : a comparative study
Authors: Ong, Yew Soon
Lim, Meng-Hiot
Zhu, Ning
Wong, Kok Wai
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2006
Source: Ong, Y. S., Lim, M. H., Zhu, N., & Wong, K. W. (2006). Classification of adaptive memetic algorithms : a comparative study. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 36(1), 141-152.
Series/Report no.: IEEE transactions on systems, man, and cybernetics-part B: cybernetics
Abstract: Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.
ISSN: 1083-4419
Rights: © 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
Classification of Adaptive Memetic Algorithms- A Comparative Study.pdfPublished version588.61 kBAdobe PDFThumbnail

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.