Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81012
Title: Both modular and single-domain Type I polyketide synthases are expressed in the brevetoxin-producing dinoflagellate, Karenia brevis (Dinophyceae)
Authors: Van Dolah, Frances M.
Morey, Jeanine S.
Murray, Shauna A.
Kohli, Gurjeet Singh
Keywords: Algal Toxin
Dinoflagellate
DRNTU::Engineering::General
Issue Date: 2017
Source: Van Dolah, F. M., Kohli, G. S., Morey, J. S., & Murray, S. A. (2017). Both modular and single-domain Type I polyketide synthases are expressed in the brevetoxin-producing dinoflagellate, Karenia brevis (Dinophyceae). Journal of Phycology, 53(6), 1325-1339. doi:10.1111/jpy.12586
Series/Report no.: Journal of Phycology
Abstract: Dinoflagellates are prolific producers of polyketide compounds, many of which are potent toxins with adverse impacts on human and marine animal health. To identify polyketide synthase (PKS) genes in the brevetoxin‐producing dinoflagellate, Karenia brevis, we assembled a transcriptome from 595 million Illumina reads, sampled under different growth conditions. The assembly included 125,687 transcripts greater than 300 nt in length, with over half having>100x coverage. We found 121 transcripts encoding Type I ketosynthase (KS) domains, of which 99 encoded single KS domains, while 22 contained multiple KS domains arranged in 1–3 protein modules. Phylogenetic analysis placed all single domain and a majority of multidomain KSs within a monophyletic clade of protist PKSs. In contrast with the highly amplified single‐domain KSs, only eight single‐domain ketoreductase transcripts were found in the assembly, suggesting that they are more evolutionarily conserved. The multidomain PKSs were dominated by trans‐acyltransferase architectures, which were recently shown to be prevalent in other algal protists. Karenia brevis also expressed several hybrid nonribosomal peptide synthetase (NRPS)/PKS sequences, including a burA‐like sequence previously reported in a wide variety of dinoflagellates. This contrasts with a similarly deep transcriptome of Gambierdiscus polynesiensis, which lacked NRPS/PKS other than the burA‐like transcript, and may reflect the presence of amide‐containing polyketides in K. brevis and their absence from G. polynesiensis. In concert with other recent transcriptome analyses, this study provides evidence for both single domain and multidomain PKSs in the synthesis of polyketide compounds in dinoflagellates.
URI: https://hdl.handle.net/10356/81012
http://hdl.handle.net/10220/46609
ISSN: 0022-3646
DOI: 10.1111/jpy.12586
Organisations: Singapore Centre for Environmental Life Sciences Engineering
Rights: © 2017 The Authors Journal of Phycology (Wiley Periodicals, Inc. on behalf of Phycological Society of America). This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCELSE Journal Articles

SCOPUSTM   
Citations 20

27
Updated on Mar 22, 2024

Web of ScienceTM
Citations 10

25
Updated on Oct 25, 2023

Page view(s)

333
Updated on Mar 29, 2024

Download(s) 50

105
Updated on Mar 29, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.