Please use this identifier to cite or link to this item:
Title: Hierarchical structure enhances and tunes the damping behavior of load-bearing biological materials
Authors: Qwamizadeh, Mahan
Liu, Pan
Zhang, Zuoqi
Zhou, Kun
Zhang, Yong Wei
Keywords: DRNTU::Engineering::Mechanical engineering
Dynamic Modulus
Dynamic Loading
Issue Date: 2016
Source: Qwamizadeh, M., Liu, P., Zhang, Z., Zhou, K., & Zhang, Y. W. (2016). Hierarchical structure enhances and tunes the damping behavior of load-bearing biological materials. Journal of Applied Mechanics, 83(5), 051009-. doi:10.1115/1.4032861
Series/Report no.: Journal of Applied Mechanics
Abstract: One of the most crucial functionalities of load-bearing biological materials such as shell and bone is to protect their interior organs from damage and fracture arising from external dynamic impacts. However, how this class of materials effectively damp stress waves traveling through their structure is still largely unknown. With a self-similar hierarchical model, a theoretical approach was established to investigate the damping properties of load-bearing biological materials in relation to the biopolymer viscous characteristics, the loading frequency, the geometrical parameters of reinforcements, as well as the hierarchy number. It was found that the damping behavior originates from the viscous characteristics of the organic (biopolymer) constituents and is greatly tuned and enhanced by the staggered and hierarchical organization of the organic and inorganic constituents. For verification purpose, numerical experiments via finite-element method (FEM) have also been conducted and shown results consistent with the theoretical predictions. Furthermore, the results suggest that for the self-similar hierarchical design, there is an optimal aspect ratio of reinforcements for a specific loading frequency and a peak loading frequency for a specific aspect ratio of reinforcements, at which the damping capacity of the composite is maximized. Our findings not only add valuable insights into the stress wave damping mechanisms of load-bearing biological materials, but also provide useful guidelines for designing bioinspired synthetic composites for protective applications.
ISSN: 0021-8936
Rights: © 2016 American Society of Mechanical Engineers (ASME).
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.