Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/87852
Title: Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass
Authors: Liu, Wenshan
Zhang, Bo
Jiang, Rongrong
Keywords: Pantothenate Kinase
DRNTU::Engineering::Bioengineering
Acetyl-CoA
Issue Date: 2017
Source: Liu, W., Zhang, B., & Jiang, R. (2017). Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass. Biotechnology for Biofuels, 10, 41-. doi:10.1186/s13068-017-0726-z
Series/Report no.: Biotechnology for Biofuels
Abstract: Background: Acetyl-CoA is an important precursor in Saccharomyces cerevisiae. Various approaches have been adopted to improve its cytosolic level previously with the emphasis on engineering the “acetyl-” part of acetyl-CoA. To the best of our knowledge, there have been no reports on engineering the “-CoA” part so far. Results: In this study, we had tried to engineer S. cerevisiae from both the “-CoA” part via pantothenate kinase overexpression [PanK from S. cerevisiae, the rate-limiting enzyme for CoA synthesis] and the “acetyl-“part through PDH bypass introduction (ALD6 from S. cerevisiae and SeAcs L641P from Salmonella enteric). A naringenin-producing reporter strain had been constructed to reflect cytosolic acetyl-CoA level as acetyl-CoA is the precursor of naringenin. It was found that PanK overexpression or PDH bypass introduction alone only led to a twofold or 6.74-fold increase in naringenin titer, but the combination of both (strain CENFPAA01) had resulted in 24.4-fold increase as compared to the control (strain CENF09) in the presence of 0.5 mM substrate p-coumaric acid. The supplement of PanK substrate pantothenate resulted in another 19% increase in naringenin production. Conclusions: To greatly enhance acetyl-CoA level in yeast cytosol, it is feasible to engineer both the “acetyl-” part and the “-CoA” part simultaneously. Insufficient CoA supply might aggravate acetyl-CoA shortage and cause low yield of target product.
URI: https://hdl.handle.net/10356/87852
http://hdl.handle.net/10220/46887
ISSN: 1754-6834
DOI: 10.1186/s13068-017-0726-z
Rights: © 2017 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.