Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/103476
Title: Bacterial metabolism during biofilm growth investigated by 13C tracing
Authors: Wan, Ni
Wang, Hao
Ng, Chun Kiat
Mukherjee, Manisha
Ren, Dacheng
Cao, Bin
Tang, Yinjie J.
Keywords: Dynamic Labeling
Entner-Doudoroff Pathway
DRNTU::Engineering::Environmental engineering
Issue Date: 2018
Source: Wan, N., Wang, H., Ng, C. K., Mukherjee, M., Ren, D., Cao, B., & Tang, Y. J. (2018). Bacterial metabolism during biofilm growth investigated by 13C tracing. Frontiers in Microbiology, 9, 2657-. doi:10.3389/fmicb.2018.02657
Series/Report no.: Frontiers in Microbiology
Abstract: This study investigated the metabolism of Pseudomonas aeruginosa PAO1 during its biofilm development via microscopy imaging, gene expression analysis, and 13C-labeling. First, dynamic labeling was employed to investigate glucose utilization rate in fresh biofilms (thickness 40∼60 micrometer). The labeling turnover time of glucose-6-P indicated biofilm metabolism was substantially slower than planktonic cells. Second, PAO1 was cultured in continuous tubular biofilm reactors or shake flasks. Then 13C-metabolic flux analysis of PAO1 was performed based on the isotopomer patterns of proteinogenic amino acids. The results showed that PAO1 biofilm cells during growth conserved the flux features as their planktonic mode. (1) Glucose could be degraded by two cyclic routes (the TCA cycle and the Entner-Doudoroff-Embden-Meyerhof-Parnas loop) that facilitated NAD(P)H supplies. (2) Anaplerotic pathways (including pyruvate shunt) increased flux plasticity. (3) Biofilm growth phenotype did not require significant intracellular flux rewiring (variations between biofilm and planktonic flux network, normalized by glucose uptake rate as 100%, were less than 20%). (4) Transcription analysis indicated that key catabolic genes in fresh biofilm cells had expression levels comparable to planktonic cells. Finally, PAO1, Shewanella oneidensis (as the comparing group), and their c-di-GMP transconjugants (with different biofilm formation capabilities) were 13C-labeled under biofilm reactors or planktonic conditions. Analysis of amino acid labeling variances from different cultures indicated Shewanella flux network was more flexibly changed than PAO1 during its biofilm formation.
URI: https://hdl.handle.net/10356/103476
http://hdl.handle.net/10220/47325
DOI: 10.3389/fmicb.2018.02657
Schools: School of Civil and Environmental Engineering 
Research Centres: Singapore Centre for Environmental Life Sciences Engineering 
Rights: © 2018 Wan, Wang, Ng, Mukherjee, Ren, Cao and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles
SCELSE Journal Articles

Files in This Item:
File Description SizeFormat 
Bacterial metabolism during biofilm growth investigated by 13C tracing.pdf3.89 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 10

36
Updated on Mar 22, 2024

Web of ScienceTM
Citations 10

32
Updated on Oct 27, 2023

Page view(s) 50

528
Updated on Mar 28, 2024

Download(s) 50

91
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.