Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/89904
Title: Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution
Authors: Ho, Xian Liang
Das, Siva Prasad
Ng, Leonard Kia-Sheun
Ng, Andrew Yun Ru
Ganguly, Rakesh
Soo, Han Sen
Keywords: DRNTU::Science::Chemistry
Electrocatalytic Hydrogen Evolution
Cobalt Nanoparticles
Issue Date: 2019
Source: Ho, X. L., Das, S. P., Ng, L. K.-S., Ng, A. Y. R., Ganguly, R., & Soo, H. S. (2019). Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution. Organometallics, 38(6), 1397-1406. doi:10.1021/acs.organomet.9b00032
Series/Report no.: Organometallics
Abstract: Hydrogen (H2) is a clean fuel that can potentially store renewable energy and overcome some of the environmental problems that arise from fossil-fuel consumption. One attractive approach is to produce H2 from water electrocatalytically using molecular complexes that can be systematically improved through ligand modifications. We report cobalt and nickel complexes supported by tetraamido macrocyclic ligands (TAMLs), which exclusively consist of earth-abundant elements. Although TAML systems are well established in high-valent transition-metal chemistry, little is known about their reactivity in reductive catalysis despite the electron-rich nature of the tetraanionic TAML. Thus we explored the utility of these nucleophilic -ate complexes as potential electrocatalysts for H2 evolution using water as the proton source. Controlled potential electrolysis experiments were performed, and the cobalt TAML variant exhibited catalytic H2 evolution activity in acetonitrile containing 1.0 M water but was inactive in purely aqueous solutions. Further investigation revealed that cobalt metal nanoparticles were electrodeposited as the active catalyst for H2 evolution. We propose that these disparities in reactivity arise from the different number of water molecules coordinated to the cobalt center, with intermediate concentrations favoring a square pyramidal structure with labile ligands, whereas high concentrations of water result in a kinetically inert octahedral complex with no empty coordination sites.
URI: https://hdl.handle.net/10356/89904
http://hdl.handle.net/10220/47964
ISSN: 0276-7333
DOI: 10.1021/acs.organomet.9b00032
Rights: © 2019 American Chemical Society (ACS). All rights reserved. This paper was published in Organometallics and is made available with permission of American Chemical Society (ACS).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
Manuscript.pdf18.66 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.