Please use this identifier to cite or link to this item:
Title: Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal
Authors: Song, Guo-Zhu
Kwek, Leong-Chuan
Deng, Fu-Guo
Long, Gui-Lu
Keywords: DRNTU::Science::Physics
Light-matter Interaction
Long-range Interactions
Issue Date: 2019
Source: Song, G.-Z., Kwek, L.-C., Deng, F.-G., & Long, G.-L. (2019). Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal. Physical Review A, 99(4), 043830-. doi:10.1103/PhysRevA.99.043830
Series/Report no.: Physical Review A
Abstract: Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconducting microwave photonic crystal. A sharp minimum-energy dip appears in the transmission spectrum of a weak input field, which reveals rich behavior of the long-range interactions arising from localized bound states. We find that the dip frequency scales linearly with both the number of the artificial atoms and the characteristic strength of the long-range interactions when the localization length of the bound state is sufficiently large. Motivated by this observation, we present a simple model to calculate the dip frequency with system parameters, which agrees well with the results from exact numerics for large localization lengths. We observe oscillation between bunching and antibunching in photon-photon correlation function of the output field. Furthermore, we find that the model remains valid even though the coupling strengths between the photonic crystal and artificial atoms are not exactly equal and the phases of external driving fields for the artificial atoms are different. Thus we may infer valuable system parameters from the dip location in the transmission spectrum, which provides an important measuring tool for the superconducting microwave photonic crystal systems in experiment. With remarkable advances to couple artificial atoms with microwave photonic crystals, our proposal may be experimentally realized in currently available superconducting circuits.
ISSN: 2469-9926
Rights: © 2019 American Physical Society. All rights reserved. This paper was published in Physical Review A and is made available with permission of American Physical Society.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:IAS Journal Articles

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.