Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/106644
Title: PA-Fuse : deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics
Authors: Awasthi, Navchetan
Prabhakar, K. Ram
Kalva, Sandeep Kumar
Pramanik, Manojit
Babu, R. Venkatesh
Yalavarthy, Phaneendra K.
Keywords: Blood Vessels
Image Enhancement
Engineering::Chemical engineering
Issue Date: 2019
Source: Awasthi, N., Prabhakar, K. R., Kalva, S. K., Pramanik, M., Babu, R. V., & Yalavarthy, P. K. (2019). PA-Fuse : deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics. Biomedical Optics Express, 10(5), 2227-. doi:10.1364/BOE.10.002227
Series/Report no.: Biomedical Optics Express
Abstract: The methods available for solving the inverse problem of photoacoustic tomography promote only one feature–either being smooth or sharp–in the resultant image. The fusion of photoacoustic images reconstructed from distinct methods improves the individually reconstructed images, with the guided filter based approach being state-of-the-art, which requires that implicit regularization parameters are chosen. In this work, a deep fusion method based on convolutional neural networks has been proposed as an alternative to the guided filter based approach. It has the combined benefit of using less data for training without the need for the careful choice of any parameters and is a fully data-driven approach. The proposed deep fusion approach outperformed the contemporary fusion method, which was proved using experimental, numerical phantoms and in-vivo studies. The improvement obtained in the reconstructed images was as high as 95.49% in root mean square error and 7.77 dB in signal to noise ratio (SNR) in comparison to the guided filter approach. Also, it was demonstrated that the proposed deep fuse approach, trained on only blood vessel type images at measurement data SNR being 40 dB, was able to provide a generalization that can work across various noise levels in the measurement data, experimental set-ups as well as imaging objects.
URI: https://hdl.handle.net/10356/106644
http://hdl.handle.net/10220/49047
DOI: 10.1364/BOE.10.002227
Rights: © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
boe-10-5-2227.pdf15.72 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.