Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/90018
Title: Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli
Authors: Wang, Haibo
Yan, Aixin
Liu, Zhigang
Yang, Xinming
Xu, Zeling
Wang, Yuchuan
Wang, Runming
Hu, Ligang
Xia, Wei
Tang, Huiru
Wang, Yulan
Li, Hongyan
Sun, Hongzhe
Mohamad Koohi-Moghadam
Keywords: Molecular Mechanism
Antimicrobial
Science::Medicine
Issue Date: 2019
Source: Wang, H., Yan, A., Liu, Z., Yang, X., Xu, Z., Wang, Y., . . . Sun, H. (2019). Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLOS Biology, 17(6), e3000292-. doi:10.1371/journal.pbio.3000292
Series/Report no.: PLOS Biology
Abstract: Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics.
URI: https://hdl.handle.net/10356/90018
http://hdl.handle.net/10220/49373
ISSN: 1544-9173
DOI: 10.1371/journal.pbio.3000292
Rights: © 2019 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:LKCMedicine Journal Articles

Files in This Item:
File Description SizeFormat 
Deciphering molecular mechanism of silver.pdf2.99 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.