Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/104643
Title: Understanding the journey of dopant copper ions in atomically flat colloidal nanocrystals of CdSe nanoplatelets using partial cation exchange reactions
Authors: Sharma, Manoj
Olutas, Murat
Yeltik, Aydan
Kelestemur, Yusuf
Sharma, Ashma
Delikanli, Savas
Guzelturk, Burak
Gungor, Kivanc
McBride, James R.
Demir, Hilmi Volkan
Keywords: Nanocrystals
Copper
Engineering::Electrical and electronic engineering
Issue Date: 2018
Source: Sharma, M., Olutas, M., Yeltik, A., Kelestemur, Y., Sharma, A., Delikanli, S., . . . Demir, H. V. (2018). Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions. Chemistry of Materials, 30(10), 3265-3275. doi:10.1021/acs.chemmater.8b00196
Series/Report no.: Chemistry of Materials
Abstract: Unique electronic and optical properties of doped semiconductor nanocrystals (NCs) have widely stimulated a great deal of interest to explore new effective synthesis routes to achieve controlled doping for highly efficient materials. In this work, we show copper doping via postsynthesis partial cation exchange (CE) in atomically flat colloidal semiconductor nanoplatelets (NPLs). Here chemical reactivity of different dopant precursors, reaction kinetics, and shape of seed NPLs were extensively elaborated for successful doping and efficient emission. Dopant-induced Stokes-shifted and tunable photoluminescence emission (640 to 830 nm) was observed in these Cu-doped CdSe NPLs using different thicknesses and heterostructures. High quantum yields (reaching 63%) accompanied by high absorption cross sections (>2.5 times) were obtained in such NPLs compared to those of Cu-doped CdSe colloidal quantum dots (CQDs). Systematic tuning of the doping level in these two-dimensional NPLs provides an insightful understanding of the chemical dopant based orbital hybridization in NCs. The unique combination of doping via the partial CE method and precise control of quantum confinement in such atomically flat NPLs originating from their magic-sized vertical thickness exhibits an excellent model platform for studying photophysics of doped quantum confined systems.
URI: https://hdl.handle.net/10356/104643
http://hdl.handle.net/10220/49512
ISSN: 0897-4756
DOI: http://dx.doi.org/10.1021/acs.chemmater.8b00196
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.chemmater.8b00196.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal.pdf1.56 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.