Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/107491
Title: Unitary matrix completion-based DOA estimation of noncircular signals in nonuniform noise
Authors: Wang, Xianpeng
Zhu, Yanghui
Huang, Mengxing
Wang, Jingjing
Wan, Liangtian
Bi, Guoan
Keywords: Engineering::Electrical and electronic engineering
Direction-of-arrival Estimation
Noncircular
Issue Date: 2019
Source: Wang, X., Zhu, Y., Huang, M., Wang, J., Wan, L., & Bi, G. (2019). Unitary matrix completion-based DOA estimation of noncircular signals in nonuniform noise. IEEE Access, 7, 73719-73728. doi:10.1109/ACCESS.2019.2920707
Series/Report no.: IEEE Access
Abstract: In this paper, a novel direction-of-arrival (DOA) estimation algorithm is proposed for noncircular signals with nonuniform noise by using the unitary matrix completion (UMC) technique. First, the proposed method utilizes the noncircular property of signals to design a virtual array for approximately doubling the array aperture. Then, the virtual complex-valued covariance matrix with the unknown nonuniform noise is transformed into the real-valued one by utilizing the unitary transformation to improve the computational efficiency. Next, a novel UMC method is formulated for the DOA estimation to remove the influence of nonuniform noise. Finally, the DOA without the influence of the unknown noncircularity phase is obtained by using the modified estimation of signal parameters via rotational invariance technique (ESPRIT). Especially, for handling the coherent sources, the forward-backward spatial smoothing technique is utilized to reconstruct a full-rank covariance matrix so that the signal subspace and the noise subspace can be correctly separated. Due to utilizing the extended array aperture and the unitary transformation, the proposed method can identify more sources than the number of physical sensors and provides higher angular resolution and better estimation performance. Compared with the existing DOA estimation algorithms for noncircular signals, the proposed one can effectively suppress the influence of the nonuniform noise. The simulation results are provided to verify the effectiveness and superiority of the proposed method.
URI: https://hdl.handle.net/10356/107491
http://hdl.handle.net/10220/49711
DOI: http://dx.doi.org/10.1109/ACCESS.2019.2920707
Rights: © 2019 IEEE. Articles accepted before 12 June 2019 were published under a CC BY 3.0 or the IEEE Open Access Publishing Agreement license. Questions about copyright policies or reuse rights may be directed to the IEEE Intellectual Property Rights Office at +1-732-562-3966 or copyrights@ieee.org.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
Unitary Matrix Completion-Based DOA.pdf4.71 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.