Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/83540
Title: Managing commute traffic : from parking provision with ride-sourcing to work hours arrangements considering household travels
Authors: Su, Qida
Keywords: Engineering::Civil engineering::Transportation
Issue Date: 2019
Source: Su, Q. (2019). Managing commute traffic : from parking provision with ride-sourcing to work hours arrangements considering household travels. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: The traffic mobility in peak hours has always been a challenge in city management. Due to the ubiquitous jobs-housing separation in most metropolitans, commuters inevitably need to travel between home and workplace with decision makings on the travel modes, departure time as well as the work schedule. This thesis then focuses on the commuting behavior and explores the management of morning commute problem from the supply of transportation facilities including parking spaces and ride-sourcing fleet size, to the travel demand of commuters with various work schedules and composite trip purposes. In terms of supply, we notice that the emerging ride-sourcing service can have a substantial impact on road traffic and the parking demand at the CBD area. Thus, we investigate the morning commute problem with bottleneck congestion and parking space constraints in the presence of ride-sourcing service. We elaborate at length how ride-sourcing affects current parking provision management in peak hours. To best manage the commute traffic, the optimal supplies of parking spaces and ride-sourcing services in total travel cost minimization are explored in a bi-modal model, which indeed addresses a critical issue on how to regulate the supply of ride-sourcing service. This analysis has then been extended to the multi-modal case to incorporate transit as well as the parking reservation. When it comes to the commute demand, with the hope to stagger the travel trips during peak hours so as to mitigate traffic congestion, we examine commuters’ work start time/ work schedule choice considering both positive productivity externalities and negative congestion externalities. Foremost, the compressed work schedule is compared to the normal work schedule and the optimal proportion of employers adopting compressed work schedule is derived. Multiple equilibria are found with the different number of compressed schedule users, depending on the agglomeration rate of productivity and the initial status. Furthermore, in view of the prevailing household travels with multiple trip purposes (e.g., daycare drop-off/pick-up) in peak hours, we incorporate such household travels into the work starting time choice model. The question on how household travelers differ from the conventional individual travelers in work schedule choice is being addressed. We further determine the optimal proportion of households and individuals adopting flextime in social benefit maximization. In some cases, the system can achieve the optimum naturally at long-run equilibrium without other policy intervention.
URI: https://hdl.handle.net/10356/83540
http://hdl.handle.net/10220/49771
DOI: 10.32657/10220/49771
Fulltext Permission: embargo_20210630
Fulltext Availability: With Fulltext
Appears in Collections:CEE Theses

Files in This Item:
File Description SizeFormat 
Thesis_Aug 6(Signed).pdf
  Until 2021-06-30
Thesis4.69 MBAdobe PDFUnder embargo until Jun 30, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.