dc.contributor.authorNilssen, Trygve K.
dc.contributor.authorTai, Xue Cheng
dc.contributor.authorWinther, Ragnar
dc.date.accessioned2009-08-12T03:16:58Z
dc.date.available2009-08-12T03:16:58Z
dc.date.copyright2000en_US
dc.date.issued2000
dc.identifier.citationNilssen, T. K., Tan, X. C., & Winther R.(2000). A robust nonconforming H-2-element. Mathematics of Computation, 70(234), 489-505.en_US
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://hdl.handle.net/10220/6056
dc.description.abstractFinite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter.en_US
dc.format.extent17 p.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesMathematics of Computation.en_US
dc.rightsMathematics of Computation © copyright 2000 American Mathematical Society. The journal's website is located at http://www.ams.org/mcom/.en_US
dc.subjectDRNTU::Science::Mathematics::Applied mathematics::Numerical analysis
dc.titleA robust nonconforming H-2-elementen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.openurlhttp://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H.
dc.identifier.doihttp://dx.doi.org/10.1090/S0025-5718-00-01230-8
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record