View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      A probabilistic memetic framework

      Thumbnail
      A Probabilistic Memetic Framework.pdf (929.5Kb)
      Author
      Nguyen, Quang Huy
      Ong, Yew Soon
      Lim, Meng-Hiot
      Date of Issue
      2009
      School
      School of Electrical and Electronic Engineering
      Version
      Published version
      Abstract
      Memetic algorithms (MAs) represent one of the recent growing areas in evolutionary algorithm (EA) research. The term MAs is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or genetic local searches. In the last decade, MAs have been demonstrated to converge to high-quality solutions more efficiently than their conventional counterparts on a wide range of real-world problems. Despite the success and surge in interests on MAs, many of the successful MAs reported have been crafted to suit problems in very specific domains. Given the restricted theoretical knowledge available in the field of MAs and the limited progress made on formal MA frameworks, we present a novel probabilistic memetic framework that models MAs as a process involving the decision of embracing the separate actions of evolution or individual learning and analyzing the probability of each process in locating the global optimum. Further, the framework balances evolution and individual learning by governing the learning intensity of each individual according to the theoretical upper bound derived while the search progresses. Theoretical and empirical studies on representative benchmark problems commonly used in the literature are presented to demonstrate the characteristics and efficacies of the probabilistic memetic framework. Further, comparisons to recent state-of-the-art evolutionary algorithms, memetic algorithms, and hybrid evolutionary-local search demonstrate that the proposed framework yields robust and improved search performance.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Journal Article
      Series/Journal Title
      IEEE transactions on evolutionary computation
      Rights
      © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
      Collections
      • EEE Journal Articles
      http://dx.doi.org/10.1109/TEVC.2008.2009460
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG